SDPharmLabs

PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1 | Accreditation #85368

Laboratory note: The estimated concentration of the unknown peak in the sample is 0.10% | Currently PharmLabs laboratory can not confirm an unidentified peak in your chromatogram due to interference (only with highly concentrated D8 products) from which we believe to be either (+)d8-THC or 49-THC. At this time there are no reference standards available for (+)d8-THC is a different compound from the main (-)d8-THC cannabinoid and, therefore, these two compounds may have different efficacies. Using the most advanced instruments and techniques available, the separation of (+)d8-THC and d9-THC is problematic for the scientific community as a whole. PharmLabs believes the unidentified peak to be a combination of (+)d8-THC with the majority, if not all, of the concentration being (+)d8-THC. Total (+/-) D8 Concentration is estimated to be 1.17%

CANX - Cannabinoids Analysis

Analyzed Dec 14, 2022 | Instrument HLPC

Measurement Uncertainty at 95% confidence7.806%

Measurement Uncertainty at 95% confidence 7.806 %	LOD	LOQ	Result	Result	Result
Analyte	mg/g	mg/g	%	mg/g	mg/Unit
11-Hydroxy-Δ8-Tetrahydrocannabivarin (11-Hyd-Δ8-THCV)	0.013	0.041	ND	ND	ND
Cannabidiorcin (CBDO)	0.002	0.007	ND	ND	ND
Abnormal Cannabidiorcin (a-CBDO)	0.01	0.031	ND	ND	ND
(+/-)-9B-hydroxy-Hexahydrocannibinol (9b-HHC)	0.012	0.036	ND	ND	ND
11-Hydroxy-Δ8-Tetrahydrocannabinol (11-Hyd-Δ8-THC)	0.007	0.021	ND	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	ND	ND	ND
Cannabigerol Acid (CBGA)	0.001	0.16	ND	ND	ND
Cannabigerol (CBG)	0.001	0.16	ND	ND	ND
Cannabidiol (CBD)	0.001	0.16	ND	ND	ND
1(S)-THD (s-THD)	0.013	0.041	ND	ND	ND
1(R)-THD (r-THD)	0.025	0.075	ND	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND	ND
Δ8-tetrahydrocannabivarin (Δ8-THCV)	0.021	0.064	ND	ND	ND
Tetrahydrocannabutol (Δ9-THCB)	0.013	0.038	ND	ND	ND
Cannabinol (CBN)	0.001	0.16	ND	ND	ND
Cannabidiphorol (CBDP)	0.015	0.047	ND	ND	ND
exo-THC (exo-THC)	0.016	8.0	ND	ND	ND
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	UI	UI	UI
Δ8-tetrahydrocannabinol (Δ8-THC)	0.004	0.16	1.77	17.69	44.22
(6aR,9S)-Δ10-Tetrahydrocannabinol ((6aR,9S)-Δ10)	0.015	0.16	ND	ND	ND
Hexahydrocannabinol (S Isomer) (9s-HHC)	0.017	0.16	30.57	305.68	764.19
(6aR,9R)-Δ10-Tetrahydrocannabinol ((6aR,9R)-Δ10)	0.007	0.16	ND	ND	ND
Hexahydrocannabinol (R Isomer) (9r-HHC)	0.016	0.16	64.25	642.47	1606.18
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	ND	ND	ND
Δ9-Tetrahydrocannabihexol (Δ9-THCH)	0.024	0.071	ND	ND	ND
Cannabinol Acetate (CBNO)	0.014	0.043	ND	ND	ND
Δ9-Tetrahydrocannabiphorol (Δ9-THCP)	0.017	0.16	ND	ND	ND
Δ8-Tetrahydrocannabiphorol (Δ8-THCP)	0.041	0.16	ND	ND	ND
Δ8-THC-O-acetate (Δ8-THCO)	0.076	0.16	ND	ND	ND
9(S)-HHCP (s-HHCP)	0.031	0.094	ND	ND	ND
Δ9-THC-O-acetate (Δ9-THCO)	0.066	0.16	ND	ND	ND
9(R)-HHCP (r-HHCP)	0.026	0.079	ND	ND	ND
3-octyl-Δ8-Tetrahydrocannabinol (Δ8-THC-C8)	0.067	0.204	ND	ND	ND
Total THC (THCa * 0.877 + Δ 9THC)			ND	ND	ND
Total THC + Δ8THC + Δ10THC (THCa * 0.877 + Δ9THC + Δ8THC + Δ10THC)			1.77	17.69	44.22
Total CBD (CBDa * 0.877 + CBD)			ND	ND	ND
Total CBG (CBGa * 0.877 + CBG)			ND	ND	ND
Total HHC (9r-HHC + 9s-HHC)			94.81	948.15	2370.37
Total Cannabinoids			96.58	965.84	2414.59

HME - Heavy Metals Detection Analysis

Analyzed Dec 12, 2022 | Instrument ICP/MSMS | Method SOP-005

Andread Bee 12, 2022 Mottoff felt / Not to N									
Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g	Analyte	LOD ug/g	LOQ ug/g	Result ug/g	Limit ug/g
Arsenic (As)	0.0002	0.0005	<loq< td=""><td>0.2</td><td>Cadmium (Cd)</td><td>3.0e-05</td><td>0.0005</td><td><loq< td=""><td>0.2</td></loq<></td></loq<>	0.2	Cadmium (Cd)	3.0e-05	0.0005	<loq< td=""><td>0.2</td></loq<>	0.2
Mercury (Hg)	1.0e-05	0.0001	0.00	0.1	Lead (Pb)	1.0e-05	0.00125	0.00	0.5

MIBIG - Microbial Testing Analysis

Analyzed Dec 12, 2022 | Instrument qPCR and/or Plating | Method SOP-007

Analyte	Result CFU/g	Limit	Analyte	Result CFU/g	Limit
Shiga toxin-producing Escherichia Coli	ND	ND per 1 gram	Salmonella spp.	ND	ND per 1 gram
Aspergillus fumigatus	ND	ND per 1 gram	Aspergillus flavus	ND	ND per 1 gram
Aspergillus niger	ND	ND per 1 gram	Aspergillus terreus	ND	ND per 1 gram

UI Not Identified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
<LOQ Detected
JULQL Above upper limit of linearity
CFU/g Colonyl Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Branden Starr

Brandon Starr, Lab Manager Wed, 14 Dec 2022 14:58:46 -0800

MTO - Mycotoxin Testing Analysis

Analyzed Dec 12, 2022 | Instrument LC/MSMS | Method SOP-004

Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg	Analyte	LOD ug/kg	LOQ ug/kg	Result ug/kg (ppb)	Limit ug/kg
Ochratoxin A	5.0	20.0	ND	20	Aflatoxin B1	2.5	5.0	ND	-
Aflatoxin B2	2.5	5.0	ND	-	Aflatoxin G1	2.5	5.0	ND	-
Aflatoxin G2	2.5	5.0	ND	-	Total Aflatoxins	10.0	20.0	ND	20

UI Not Identified
ND Not Detected
NA Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
«LOQ Detected Culp Detected VULOL Above upper limit of linearity
CFU/g Colonyl Forming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Brandon Starr, Lab Manager Wed, 14 Dec 2022 14:58:46-0800

