

ACCS LABORATORY 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068	IPLIANCE	cate of Analysis	legal D9 distillate Sample Matrix: CBD/HEMP Derivative Products (Inhalation - Heated)	
		Compliance Test		
Pinnacle Hemp 2231 Missouri Ave	Batch # 2 Batch Date: 2021-12-01 Extracted From: CBD	Test Reg State: Oregon	Production Facility: pinna Production Date: 2021-1	

Initial Gross Weight: 12.569 g

The second se

Carthage, MO 64836

Product Image

Order # PIN211223-010001 Order Date: 2021-12-23 Sample # AACH700

	Potency -	11			Tested	🗳 Pote	ency Summary
*	Specimen Weigh				(HPLC/LCMS)	Total THC 69.269%	Total CBD 3.954%
Analyte Delta-9 THC	Dilution (1:n) 000.000	LOD (%) 0.000013	LOQ (%) 0.001	Result (mg/g) 692.690	(%) 69.269	Total CBG	Total CBN
CBD	1000.000	0.000013	0.001	39.540	3.954	0.181%	0.093%
CBG	1000.000	0.000248	0.001	1.810	0.181	Other Cannabinoids 0.079%	Total Cannabinoids 73.576%
CBN CBC	1000.000 1000.000	0.000014 0.000018	0.001 0.001	0.930 0.430	0.093 0.043	0.079%	/3.370%
CBDV	1000.000	0.000065	0.001	0.360	0.036		
THCV	1000.000	0.000007	0.001		<loq< td=""><td></td><td></td></loq<>		
Delta-8 THC	1000.000	0.000026	0.001		<loq< td=""><td></td><td></td></loq<>		
CBGA	1000.000	0.00008	0.001		<loq< td=""><td></td><td></td></loq<>		
CBDA	1000.000	0.00001	0.001		<loq< td=""><td></td><td></td></loq<>		
THCA-A	1000.000	0.000032	0.001		<loq< td=""><td></td><td></td></loq<>		

drit Gr -Lab Toxicologist

Xueli Gao Ph.D., DABT

Aixia Sun Lab Director/Principal Scientist D.H.Sc., M.Sc., B.Sc., MT (AAB)

Sampling Date: 2021-12-30 Lab Batch Date: 2021-12-30 Completion Date: 2022-01-03

> Potency Tested

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta8 THC + Total CBN + CBT + Delta8-THCV + Total CBG + Total TBO + Total THCV + CBL + Total THC + Total CBC + Total CBV + Delta10-THC - *Total THC + Total CBN + CBT + Delta8-THCV + Total CBG + Total CBN + CBT + Delta8-THCV + Total CBG + Total CBN + CBT - Delta8-THC + Total CBG + Total CBN + CBT - Co-Accetate, *Analyte Details above show the Dry Weight Concentration unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Millifer, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, (LOD = Limit of Detection, ((gg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/ - 10%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

ACS CANNABIS & BEYOND CO			THC-O Sample Matrix: CBD/HEMP	
721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com			Derivative Products (Inhalation - Heated)	
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis		
Pinnacle Hemp 2231 Missouri Ave Carthage, MO 64836	Batch # 2 Batch Date: 2022-01-31	Test Reg State: Oregon	Production Facility: pinn. Production Date: 2022-0	
Order # PIN220131-070001 Order Date: 2022-01-31 Sample # AACK803	Sampling Date: 2022-02-03 Lab Batch Date: 2022-02-03 Completion Date: 2022-02-06	Initial Gross Weight: 13.533 g		

Det 22 (1 (11))

	Potono	y 22 (L	211/2				Tested	🗳 Pote	ency Summary
*		y 22 (L) leight: 47.070	•				(LCUV)	Total THC None Detected	Total CBD None Detected
Analyte Delta-8 TH(C-O-Acetate	Dilution (1:n) 1000.000	LOD (%) 0.000027	LOQ (%) 0.0003	Result (mg/g) 803.1000	(%) 80.3100		Total CBG 0.046%	Total CBN None Detected
Delta-9 TH(Delta-8 TH(CBG		100.000 10.000 10.000		0.0003 0.0015 0.0015	38.1500 8.1570 0.4646	3.8150 0.8157 0.0465		Other Cannabinoids 84.941%	Total Cannabinoids 84.987%
THCVA THCA-A		10.000 10.000	0.000047 0.000032			<loq <loq< td=""><td></td><td></td><td></td></loq<></loq 			
THCV Exo-THC CBC		10.000 10.000 10.000		0.0015		<loq <loq <loq< td=""><td></td><td></td><td></td></loq<></loq </loq 			
Delta-9 THO CBCA		10.000	0.000013	0.0015		<loq <loq <loq< td=""><td></td><td></td><td></td></loq<></loq </loq 			
Delta-10 TH CBT	ic	10.000	0.000003	0.0015		<l0q <l0q< td=""><td></td><td></td><td></td></l0q<></l0q 			
BNA BN		10.000 10.000	0.000095 0.000014			<loq <loq< td=""><td></td><td></td><td></td></loq<></loq 			
BL BGA		10.000 10.000	0.00008			<loq <loq< td=""><td></td><td></td><td></td></loq<></loq 			
BDVA		10.000 10.000	0.000014	0.0015		<loq <loq< td=""><td></td><td></td><td></td></loq<></loq 			
CBDA CBD Delta-8 TH(2V	10.000 10.000 10.000	0.00001 0.000054 0.00004	0.0015 0.0015 0.0015		<loq <loq <loq< td=""><td></td><td></td><td></td></loq<></loq </loq 			

Gr drit Lab Toxicologist Xueli Gao

1200 ~ < Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Potency Tested

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBD = CBD + (CBDVA * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBDA * 0.877), *Total CBC = CBC + (CBCA * 0.877), *Total THC-O-Acetate = Delta 8 THC-O-Acetate + Delta 9 THC-O-Acetate, *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta8-THC + Total CBN + CBT + Delta8-THCV + Total CBC + Total CBD + Total THCV + CBL + Total THC + Total CBC + Total CBO + Total THCV + CBL + Total THC + Total CBO + Delta0-THC + Total CBO + Delta0-THC + Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (ug/g) = Milcrogram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (are aratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 10%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

KCA Laboratories 232 North Plaza Drive Nicholasville, KY 40356

+1-833-KCA-LABS https://kcalabs.com KDA Lic.# P_0058

l of l

тнср

ample ID: SA-220627-102 latch: 1 ype: In-Process Materials 1atrix: Concentrate - Dist Init Mass (g):		Received: 06/29 Completed: 07/0		Client Pinnacle Hem 2900 Davis Bl Joplin, MO 64 USA	vd
			Summary		
			Test Cannabinoids	Date Tested 07/06/2022	Status Tested
	60				
ND	87.6 %	91.7 %	Not Tested	Not Tested	Yes
Total ∆9-THC	Δ8-THCP	Total Cannabinoids	Moisture Content	Foreign Matter	Internal Standard
	Domice			i oreigit hiddel	Normalization
annabinoids b		C-MS/MS, and			
annabinoids b nalyte 3C	y HPLC-PDA, L LOI (%	C-MS/MS, and	/or GC-MS/M	S Result (%) ND	Result (mg/g) ND
annabinoids b nalyte 3C 3CA	oy HPLC-PDA, L LOI (% 0.000 0.010	C-MS/MS, and	/or GC-MS/M	S Result (%) ND ND	Result (mg/g) ND ND
annabinoids b nalyte ac acc acc	Dy HPLC-PDA, L LOI (% 0.000 0.011 0.001 0.001 0.001	C-MS/MS, and D 95 81 96	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.018	S Result (%) ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND
annabinoids b alyte c c c c c c c c c c c c c c c c c c c	by HPLC-PDA, L LOI (% 0.000 0.011 0.000 0.011 0.000 0.000 0.000	C-MS/MS, and D 95 81 66 81	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.018 0.0242	S Result (%) ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND
annabinoids b alyte C CA CV D DA	by HPLC-PDA, L LOI (%) 0.000 0.011 0.000 0.000 0.000 0.000	C-MS/MS, and D 95 81 16 81 43	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.018 0.0242 0.013	S Result (%) ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND
annabinoids b malyte SC SCA SCV SD SDA SDA SDP	by HPLC-PDA, L LOI (% 0.000 0.011 0.000 0.000 0.000 0.000 0.000	C-MS/MS, and D 95 61 66 81 43 67	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.018 0.0242 0.013 0.02	S Result (%) ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND
annabinoids b malyte SC SCA SCV SD SDA SDP SDV	by HPLC-PDA, L LOI (%) 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	C-MS/MS, and D 95 61 63 64 67 61	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0543 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.0182	S Result (%) ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids b halyte 3C 3CA 3CV 3D 3DA 3DP 3DA 3DP 3DV 3DV	by HPLC-PDA, L LOI (% 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	C-MS/MS, and D 95 81 16 81 43 67 61 21 0 0 0 0 0 0 0 0 0 0 0 0 0	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.0182 0.0063	S Result (%) ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND
annabinoids b halyte 3C 3CA 3CV 3D 3DA 3DP 3DV 3DV 3DVA 3G	by HPLC-PDA, L LOI (% 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	C-MS/MS, and D 95 61 63 64 63 67 61 21 57	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.0182 0.0063 0.0072	S Result (%) ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND
annabinoids b nalyte 3C 3CA 3CA 3CV 3D 3DA 3DA 3DP 3DV 3DV 3DVA 3G 3GA	Py HPLC-PDA, L LOI (%) 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.0132 0.0063 0.0063 0.00172 0.0147	S Result (%) ND	Normalization Result (mg/g) ND ND ND ND ND ND ND ND ND ND ND ND ND
annabinoids b nalyte 3C 3CA 3CA 3CV 3D 3DA 3DA 3DP 3DV 3DV 3DVA 3G 3GA 3L	Py HPLC-PDA, L LOI (%) 0.000 0.010 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0335	S Result (%) ND	Normalization Result (mg/g) ND
annabinoids b nalyte 3C 3CA 3CA 3CV 3D 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA 3DA	Py HPLC-PDA, L LOI (%) 0.000 0.010 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0335 0.0371	S Result (%) ND	Normalization Result (mg/g) ND
annabinoids b nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BDA BDA BD	Py HPLC-PDA, L LOI (%) 0.000 0.010 0.0000 0.000 0.000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0335 0.0371 0.0316 9	S Result (%) ND	Normalization Result (mg/g) ND
annabinoids b nalyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BCA BCA BLA BLA BLA BN BNA	Py HPLC-PDA, L LOI (%) 0.000 0.010 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56 16 17 19 10 10 10 10 10 10 10 10 10 10	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0047 0.0047 0.0035 0.0371 0.0147 0.0335 0.0371 0.0169 0.0181	S Result (%) ND	Normalization Result (mg/g) ND
annabinoids b nalyte BC BCA BCA BCA BCA BDA BDA BDA BDA BDA BDA BDA BCA BCA BLA BLA BLA BLA BLA BLA BLA BLA BLA BL	Py HPLC-PDA, L LOI (%) 0.000 0.010 0.0000 0.0000 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56 16 17 49 12 24 56 16 17 17 19 10 10 10 10 10 10 10 10 10 10	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0047 0.0035 0.0371 0.0169 0.0181 0.0312	S Result (%) ND	Normalization Result (mg/g) ND
annabinoids b nalyte BC BCA BCA BCA BCA BCA BDA BDA BDA BDA BDA BCA BCA BLA BLA BLA BLA BLA BLA BLA BLA BLA BL	Py HPLC-PDA, L LOI (%) 0.000	C-MS/MS, and D 95 81 96 81 43 67 61 21 57 49 12 24 56 96 97 49 12 24 56 96 97 49 12 24 56 96 97 97 97 97 95 95 95 95 95 95 95 95 95 95	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0063 0.0172 0.0147 0.0035 0.0371 0.0315 0.0312 0.02	S Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b nalyte BC BCA BCV BD BDA BDA BDP BDV BDVA BG BGA BLA BLA BLA BLA BN BNA 8-THC 8-THCP 9-THC	Py HPLC-PDA, L LOI (%) 0.000 0.010 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56 16 21 57 49 12 24 56 16 17 76	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0063 0.0172 0.00147 0.0035 0.0071 0.0169 0.0312 0.02 0.02	S Result (%) ND	Normalization Result (mg/g) ND
Cannabinoids b malyte BC BCA BCA BCV BD BDA BDA BDA BDP BDV BDVA BG BGA BLA BLA BLA BLA BN BNA 8-THC 8-THCP 9-THC	Py HPLC-PDA, L LOI (%) 0.000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56 16 21 57 49 12 24 56 16 17 76 84	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0035 0.0315 0.0371 0.0169 0.0181 0.0312 0.02 0.0251	S Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b nalyte BC BCA BCA BCV BD BDA BDA BDP BDV BDVA BG BGA BLA BLA BLA BLA BN BNA 8-THC 8-THC 9-THC 9-THC 9-THCP	Py HPLC-PDA, L LOI (%) 0.000 0.001 0.0000 0.0000 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56 16 21 57 49 12 24 56 16 17 76 84 67 76 84 67 76 84 67 76 84 67 76 84 67 76 84 67 76 84 67 76 84 77 76 84 77 76 84 77 76 84 77 76 84 77 76 84 77 76 84 77 76 85 77 76 87 77 76 87 77 77 77 77 77 77 77 77 77	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0063 0.0172 0.00147 0.0035 0.0071 0.0169 0.0181 0.021 0.02 0.0227 0.0227 0.0251 0.02	S Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
annabinoids b nalyte BC BCA BCA BCV BD BDA BDA BDP BDV BDV BDV BBV BBA BG BGA BL BLA BLA BLA BLA BN BNA 3-THC 3-THCP 3-THCP 3-THCP 3-THCP	Py HPLC-PDA, L LOI (%) 0.000 0.001 0.0000 0.0000 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56 16 21 57 49 12 24 56 16 17 76 84 67 61 21 57 49 12 24 56 10 10 10 10 10 10 10 10 10 10	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0035 0.0315 0.0371 0.0169 0.0181 0.02 0.027 0.0251 0.02 0.0251 0.02 0.026 0.026 0.0251 0.02 0.026 0.026 0.0251 0.02 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.027 0.027 0.0251 0.02 0.026 0.026 0.027 0.027 0.027 0.0251 0.02 0.026 0.027 0.0251 0.02 0.026 0.0251 0.02 0.026 0.0251 0.026 0.026 0.027 0.0251 0.026 0.026 0.027 0.0251 0.026 0.026 0.0251 0.026 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.027 0.0251 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.027 0.027 0.026 0.026 0.026 0.027 0.026 0.0	S Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b malyte BC BCA BCA BCV BD BDA BDA BDP BDV BDVA BG BGA BLA BLA BLA BLA BN BNA 8-THC 8-THCP 9-THC 9-THC 9-THCY 9-THCY 9-THCV	Py HPLC-PDA, L LOI (%) 0.000 0.001 0.0000 0.0000 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56 16 21 57 49 12 24 56 16 17 76 84 67 61 21 57 49 12 24 56 10 10 10 10 10 10 10 10 10 10	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.018 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0063 0.0172 0.00147 0.0035 0.0071 0.0169 0.0181 0.021 0.02 0.0227 0.0227 0.0251 0.02	S Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND
Cannabinoids b malyte BC BCA BCV BD BDA BDP BDV BDVA BC BCA BLA BLA BLA BLA BNA 8-THC 8-THCP 9-THC 9-THCA 9-THCV 9-THCV 9-THCV 9-THCV 0-THCVA otal Δ9-THC otal Δ9-THC otal Δ9-THC	Py HPLC-PDA, L LOI (%) 0.000 0.001 0.0000 0.0000 0.0000 0.000000	C-MS/MS, and D 95 81 16 81 43 67 61 21 57 49 12 24 56 16 21 57 49 12 24 56 16 17 76 84 67 61 21 57 49 12 24 56 10 10 10 10 10 10 10 10 10 10	/or GC-MS/M LOQ (%) 0.0284 0.0543 0.0543 0.0242 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.013 0.02 0.0147 0.0035 0.0315 0.0371 0.0169 0.0181 0.02 0.027 0.0251 0.02 0.0251 0.02 0.026 0.026 0.0251 0.02 0.026 0.026 0.0251 0.02 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.027 0.027 0.0251 0.02 0.026 0.026 0.027 0.027 0.027 0.0251 0.02 0.026 0.027 0.0251 0.02 0.026 0.0251 0.02 0.026 0.027 0.0251 0.026 0.026 0.027 0.0251 0.02 0.026 0.026 0.027 0.027 0.027 0.0251 0.02 0.026 0.026 0.027 0.027 0.0251 0.02 0.026 0.026 0.027 0.027 0.026 0.027 0.026 0.027 0.027 0.026 0.027 0.026 0.027 0.026 0.026 0.02 0.026 0.027 0.026 0.026 0.026 0.026 0.026 0.027 0.026 0	S Result (%) ND ND ND ND ND ND ND ND ND ND	Normalization Result (mg/g) ND

ND = Not Detected; NT = Not Tested; LOD = Limit of Detection; LOQ = Limit of Quantitation; RL = Reporting Limit; Δ = Delta; Total Δ 9-THC = Δ 9-THCA * 0.877 + Δ 9-THC; Total CBD = CBDA * 0.877 + CBD;

Generated By: Ryan Bellone Commercial Director Date: 07/06/2022

Tested By: Scott Caudill Senior Scientist Date: 07/06/2022

This product or substance has been tested by KCA Laboratories using validated testing methodologies and an ISO/IEC 170252017 accredited quality system. Values reported relate only to the product or substance tested. The reported result is based on a sample weight. Unless otherwise stated, results of tests performed on all quality control samples met criteria for acceptance established by KCA Laboratories. KCA Laboratories makes no claims as to the efficacy, safety or other risks associated with any detected or non-detected amounts of any substances reported herein. This Certificate of Analysis shall not be reproduced except in full, without the written approval of KCA Laboratories. KCA Laboratories can provide measurement uncertainty upon request.